

President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton May 18-20, 2022

BOLOGNA BOLOGNA, ROYAL HOTEL CARLTON

DISCLOSURES: PROF. WOJCIECH JURCZAK, M.D., PH.D.

ADVISORY BOARDS : Astra Zeneca, Beigene, Janssen, Sandoz

RESEARCH FUNDING: Astra Zeneca, Bayer, Beigene, Celltrion, Hutchmed, Janssen, Sandoz, TG Therapeutics,

Rituximab Biosimilars

The number of available anti-neoplastic agents increases

Prof. Wojciech Jurczak MD, PhD

The access to modern medical technologies is delayed

Ref: [1]. Stott K. Pharma's broken business model: An industry on the brink of terminal decline. Endpoints news, November 28, 2017. https://endpts.com/pharmas-broken-business-model-an-industry-on-the-brink-of-terminal-decline/. Accessed March 7, 2019

Prof. Wojciech Jurczak MD, PhD

..... are those we may afford

More affordable medicines: generics and biosimilars

Small molecule → Generic *i.e.* Acetylsalicylic acid - 21 atoms Biological drug→ Biosimilari.e. lgG1 antibody > 20,000 atoms

Low	Molecular weight	High
Simple, low potential for variation	Structure	Complex, high potential for variation
Chemical method producing identical molecules	Synthesis	Biological method producing highly similar proteins
All attributes	Matches reference medicine in terms of	Efficacy, PK/PD, safety and immunogenicity, as demonstrated by comprehensive preclinical and clinical comparability programme

Prof. Wojciech Jurczak MD,PhD

National Research Institute of Oncology

The importance of biologics within the European pharmaceutical market

Troein et al., The Impact of Biosimilar Competition in Europe December 2021

Biosimilars approved in Europe

Source: IQVIA analysis of EMA EPAR list (last accessed November 2021)

Troein et al., The Impact of Biosimilar Competition in Europe December 2021

Prof. Wojciech Jurczak MD,PhD

National Research

Institute of

Oncology

Yearly savings from biosimilar competition

Cost for post-biosimilar volume at pre-biosimilar list prices

Troein et al., The Impact of Biosimilar Competition in Europe December 2021

Increasing biosimilar uptake

Prof. Wojciech Jurczak MD, PhD

National Research

Institute of

Oncology

Approval of originator drugs and biosimilars is different

Approval of originator drugs and biosimilars is different

Key considerations for Phase III trial designs

	Originator	Biosimilar
Patient population	Any	Sensitive and homogeneous
Clinical design	Superiority versus standard of care	Comparative versus innovator (therapeutic equivalence studies)
Study endpoints	Clinical outcomes data (OS & PFS) or accepted/established surrogates	Pharmacokinetic and Pharmacodynamic markers; objective response rate (RR)
Safety	Acceptable risk/benefit profile versus standard of care	Similar safety profile to innovator
Immunogenicity	Acceptable risk/benefit profile versus standard of care	Similar immunogenicity profile to innovator
Extrapolation	Not allowed	Possible if justified

Manufactured Biologics is a complicated process

Product impact: formulation of aggregates/product

reactions, shelf life

Product impact: extent of removal of impurities or product

aggregation, biological activity

Prof. Wojciech Jurczak MD,PhD National Oncology

Biologicals Are Similar But Not Identical

"Nonidenticality" is a normal principle in biotechnology. No batch of any biologic is "identical" to the others.

Prof. Wojciech Jurczak MD, PhD

No batch of any biological is identical to the others

Batch-to-batch

- Non-identicality is a normal principle in glycosylated proteins
- No batch of any biologic is 'identical' to the other batches
- · Variability is tightly controlled within acceptable limits

Variability of major glycan variant in commercial mAb

Manufacturing changes

- · Manufacturing changes are made frequently
- · Differences in attributes can be larger than batch-to-batch variability
- Such changes are stringently controlled by regulators and approved only if they do NOT lead to clinically meaningful differences

Schiestl M, et al. *Nat Biotechnol.* 2011;29:310–2

Variability of rituximab reference medicine before and after manufacturing change

National Research Institute of

Oncology

Companies may change their manufacturing processes multiple times after approval, which can impact analytical variability

Veser B. et al., Cur Med Res Op 2016; 32: 829-834

Prof. Wojciech Jurczak MD, Pł

How similar are biosimilars and their reference medicines in biochemical structure?

Powerful tools have evolved to allow comprehensive characterization: e.g. mass spectrometry

10-million-fold increase

van Duijn E 2010. J Am Soc Mass Spectrom;21(6):971–8. Adapted from Mire-Sluis T 2012, CASSS (Mass Spec) [online]. Available: http://c.ymcdn.com/sites/www.casss.org/resource/resmgr/Mass_Spec_Speaker_Slides/2012_MS_Mire-SluisTony.pdf [accessed at March 23rd, 2016].

Prof. Wojciech Jurczak MD, PhD

Biological characterisation of Sandoz Rituximab

The reference product range reflects the minimum and maximum value of 59 batches for the ADCC, 62 batches for the CDC bioassay, 48 batches for target binding and 7 batches for the apoptosis bioassay, which was developed later. The Sandoz biosimilar rituximab range reflects the minimum and maximum value of 11 clinic batches for binding, ADCC and CDC and 5 batches for the apoptosis assay

*Assessed using the two-sided test procedure (TOST) with bioequivalence limits of 0.8-1.25

Visser et al. BioDrugs 2013;27:495-507. ADCC, antibody-dependent cellular cytotoxicity; CDC, complement-dependent cytotoxicity;

Prof. Wojciech Jurczak MD, Ph

First 2 Rituximab Biosimilars approved by EMA

Sandoz rituximab (1054 patients)

Study	Design	Indica- tion	Primary endpoint	Ν	Status
JP-trial	Phase I Open-label Single-arm	Indolent LTB NHL	Safety and PK of SDZ-RTX	6	Completed NCT01933516
ASSIST- RA	Phase II RCT (1:1:1) Double-blind	RA	PK equivalence between SDZ-RTX and Ref-RTX	312	Completed Published ¹
ASSIST- FL	Phase III RCT (1:1) Double-blind	Advanced FL	Therapeutic equivalence between SDZ-RTX and Ref-RTX-EU	629	Study ongoing Published ²
ASSIST- RT	Phase III RCT (1:1) Double-Blind	RA	Safety and immunogenicity	107	Completed Published ³

CT-P10 (982 patients)

	Study	Design	Indica- tion	Primary endpoint	N	Status
	1.1	Phase I RCT (2:1) Double-blind	RA	PK equivalence between CT-P10 and Ref-RTX	154	Completed Published ^{4,5}
(1.3 (1.1 follow- on study)	Phase I Open-label Single-arm	RA	Long-term efficacy and safety of CT-P10	58	Completed Published ⁶
	1.2	Phase I Open-label Single-arm	DLBCL	Initial evidence of CT-P10 safety	N/A	Terminated recruitment difficulties ^{7,8}
	3.2	Phase III RCT (1:1:1) Double-blind	RA	PK and therapeutic equivalence between CT-P10 and Ref-RTX	372	Study ongoing Published ⁹
	3.3	Phase I/III RCT (1:1) Double-blind	Advanced FL	PK equivalence and therapeutic non-inferiority between CT-P10 and Ref-RTX-US	140	Study ongoing Published ¹⁰
	3.4	Phase III RCT (1:1) Double-Blind	LTB FL	Therapeutic equivalence between CT-P10 and Ref-RTX	258	Recruiting ¹¹

Coiffier et al., Lancet Haematol 2017, Jurczak et al., Lancet Haematol 2017, Ogura et al., Lancet haematol 2018

Pharmacokinetics - (AUC_(0-inf))- (PAS)

Smolen J et al., Ann Rh Dis. 2017

Ogura et al Lancet Haematol 2018

Pharmacodynamics - peripheral B cell depletion

Prof. Wojciech Jurczak MD, PhD

Efficacy DAS (Disese Activity Score)

GP13-302 clinical trial assessing AE in RA patients treated previously with originator Rituximab

	GP 2013 (N)	MabThera (N)	Total (N)
No of treated patients	53	54	107
Anaphylactic Reactions	0	1	1
Hypersensitivity Reactions	5	6	11
Immunogenicity	0	1	1
Infusion-Related Reactions	6	10	16
SAE	0	4	4
AE	19	21	40

www.clinicaltrials.gov/ct2/show/results/NCT02514772

Study rationale in FL

- Studies were **designed to confirm non-inferior clinical effectiveness** of biosimilar as compared to originator rituximab in a sensitive population
- Follicular lymphoma was chosen as the most appropriate indication as the disease has a more homogeneous nature amongst the approved oncology indications of rituximab
- Further, the combination R-CVP was considered the most sensitive treatment option, as rituximab had shown the largest additive treatment effect to a chemotherapy backbone treatment in the combination with CVP
- Immunochemotherapy with Rituximab remains the current standard of care for previously untreated patients, the combination regimen increases the RR and prolongs both PFS and OS

Jurczak W, et al. Lancet Haematol 2017 Coiffier B ,et al. Lancet Haematol 2017

Comparison of study design – phase III studies in advanced FL

	ASSIST-FL ¹ Phase III	CT-P10 3.3 ² Phase III		
Number of patients randomized	N=627	N=140 (N=121 in part 1)		
Patient characteristics	 Advanced FL (Ann Arbor stage III–IV) WHO grade 1-3a (confirmed by central pathological testing) 	 Advanced FL (Ann Arbor stage III–IV) WHO grade 1-3a (based on local laboratory review) 		
	R-CVP (8 x 3-week cycles)	R-CVP (8 x 3-week cycles)		
	IV cyclophosphamide (750 g/m ²) on Day 1	IV cyclophosphamide (750 g/m ²) on Day 1		
Induction therapy	IV vincristine (1.4 mg/m ²) on Day 1	IV vincristine (1.4 mg/m ²) on Day 1		
	Oral prednisone (100 mg) on Days 1–5	Oral prednisone/prednisolone (40 mg/m ²) on Days 1–5		
	IV SDZ-RTX or Ref-RTX-EU (375 mg/m ²) on Day 1	IV CT-P10 or Ref-RTX-US (375 mg/m ²) on Day 1		
Maintenance therapy	IV SDZ-RTX or Ref-RTX-EU (375 mg/m ²)	IV CT-P10 or Ref-RTX-US (375 mg/m ²)		
maintenance therapy	Every 3 months for 2 years (every 2 months in Italy)	Every 2 months for 2 years		
Primary objective(s)	 To demonstrate equivalent efficacy between SDZ-RTX and Ref-RTX-EU in terms of centrally assessed overall response (CR+PR) at 24 weeks 	 Part 1 - To demonstrate PK equivalence between CT-P10 and Ref-RTX-US in terms of AUC_{tau} and C_{max98} over induction Cycle 4 (Weeks 9–12) Part 2 - To demonstrate non-inferior efficacy of CT-P10 compared with Ref-RTX-US in terms of centrally assessed overall response (<u>CR+CRu+PR</u>) at 24 weeks 		
	PK: C _{max} , C _{trough} , AUC _{0-21d} , AUC _{all}	$PK:\ C_{max},\ C_{trough},\ C_{av},\ T_{max},\ V_{SS},\ T_{1/2},\ MRT,\ PTF$		
Secondary	PD: Median B-cell count, AUEC	PD: Median B-cell count		
objectives	Efficacy: PFS, OS	Efficacy: PFS, TTP, TTF, DFS, OS		
	Safety and immunogenicity	Safety and immunogenicity		

National Research Institute of Oncology

Prot. vvojciecn Jurczak MD,PhI

Patient demographics and baseline characteristics - phase III studies in advanced FL

		AS: (N	SIST-FL ¹ I=627)	CT-P10 3.3 ² (N=140)			
		SDZ-RTX (N=312)	Ref-RTX-EU (N=315)	CT-P10 (n=70)	Ref-RTX-US (N=70)		
Age, years		57.5 (SD: 11.86)	56.4 (SD: 11.72)	57.0 (IQR: 45– 66)	58.5 (IQR: 47– 66)		
Gender – female, n (%)		181 (58)	169 (54)	40 (57)	37 (53)		
	0-1	30 (10)	35 (11)	8 (11)	6 (9)		
FLIPI score, n (%)	2	106 (34)	103 (33)	25 (36)	21 (30)		
	>3	176 (56)	177 (56)	37 (53)	43 (61)		
	0	179 (57)	175 (56)	44 (63)	47 (67)		
ECOG performance	1	125 (40)	123 (39)	25 (36)	22 (31)		
score, n (%)	2	5 (2)	13 (4)	1 (1)	1 (1)		
	Missing	3 (1)	4 (1)	0	0		
Bulky disease (tumour (%)	> 7cm), n	44 (14)	56 (18)	11 (16)	14 (20)		

Prof. Wojciech Jurczak MD, PhD

Primary efficacy results – phase III studies in advanced FL

Jurczak et al, Lancet Haematol 2017 Coiffier et al, Lancet Haematol 2017

Safety and immunogenicity results - phase III studies in advanced FL

	ASSIS (N=	5T-FL ¹ 627)	СТ-Р1 (N=	10 3.3² 140)
	SDZ-RTX (N=312)	Ref-RTX-EU (N=315)	СТ-Р10 (N=70)	Ref-RTX-US (N=70)
Any adverse event (AE)	289 (92.6)	288 (91.4)	58 (82.9)	56 (80.0)
Grade 3 neutropenia	48 (15.4)	51 (16.2)	15 (21)	7 (10)
Serious AE	71 (22.8)	63 (20.0)	16 (22.9)	9 (12.9)
Infusion-related reaction	41 (13.1)	37 (11.7)	16 (22.9)	17 (24.3)
Deaths	4 (1.3)	7 (2.2)	1 (1.4)	0
Anti-drug antibodies	5/268 (2)	3/283 (1)	3 (4)	2 (3)

Rituximab Biosimilars approved by EMA

Product	Manufacturer	Therapeutic	Authorization
name		area	date
Blitzima	Celltrion	NHL	13 Jul 2017
		CLL, NHL	
Rixathon	Sandoz	Microscopic polyangiitis, RA, Wegener granulomatosis	15 Jun 2017
		CLL, NHL	
Riximyo	Sandoz	Microscopic polyangiitis, RA, Wegener granulomatosis	15 Jun 2017
		CLL, NHL, Granulomatosis with polyangiitis, Microscopic	
Ruxience	Pfizer	polyangiitis, RA, Pemphigus vulgaris	1 Apr 2020
		CLL, NHL, Granulomatosis with polyangiitis, Microscopic	
Truxima	Celltrion	polyangiitis, RA	17 Feb 2017

		Pub	lished suppo	orting data			
Rituximab Biosimilar /	Dhysico		Pre-	Cl	inical data		Approved/status
Company	chemical	Functional	clinical data	Indolent NHL/FL	DLBCL	RA	

Biosimilars (approved by EMA or FDA)								
GP2013	Sandoz (Germany)	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	Europe (2017)
СТ-Р10	Celltrion (S. Korea)	✓	✓	×	✓	×	\checkmark	Europe (2017); US (2019)
PF-05280586	Pfizer (US)	\checkmark	\checkmark	✓	\checkmark	×	\checkmark	Europe (2020)
Biosimilars k	out under clinical d	levelopmen	nt (not yet aj	oproved by	the EMA o	or FDA)		
RTXM83	mAbxience (Spain)	\checkmark	✓	✓	×	✓	×	Phase III (approved in Brazil)
ABP 798	Amgen (US)	\checkmark	\checkmark	×	×	×	×	Phase III
Mabion CD20	Mabion (Poland)	×	×	×	×	×	×	Submitted to EMA (2018)
SAIT101	Archigen (UK)	×	×	×	×	×	×	Phase III
Biomimics (distributed in some	e countries,	but not app	proved to th	ne regulato	ory standar	ds of El	MA or FDA)
BCD-020	Biocad (Russia)	×	×	×	\checkmark	×	\checkmark	Russia (2014) ⁺
Reditux	Dr. Reddy's (India)	×	×	×	×	\checkmark	×	India (2007) [‡]

Extrapolation is based on the entire similarity exercise

	F	Reference				Biosimilar		
Structural attributes (pre-clinical)		Μ	Α	Т	С	Н		
Biological functions (pre-clinical)		Μ	А	Т	С	н		
Human PK/PD (phase I or II trial)		Μ	Α	Т	С	Н		
Sensitive indication (phase III trial)		Μ	Α	I	С	Н		
Less sensitive indications		J	UST		I E	D		

PD, pharmacodynamics; PK, pharmacokinetics Kurki P, et al. J Crohns Colitis 2014;8:258; Weise M, et al. Blood 2014;124:3191–6; Weise M, et al. Blood 2012;120:5111–17; Sandoz-generated/owned figure (November 18 2014).

CT-P10 vs Rituximab in Untreated Low-Tumor-Burden FL

Kwak et al., Clin.Lymph, Myeloma and Leuk. 2021

CT-P10 vs Rituximab in Untreated Low-Tumor-Burden FL

	CT-P10 (<i>n</i> = 130)	Rituximab (n=128)
Total number of TEAEs	593	591
Patients with \geq 1 TEAE	114 (88)	104 (81)
Study drug-related	74 (57)	64 (50)
Patients with \geq 1 TEAE due to infections and infestations	59 (45)	53 (41)
Study drug-related	21 (16)	15 (12)
Patients with \geq 1 TEAE leading to permanent study drug discontinuation	9 (7)	2 (2)
Study drug-related	3 (2)	2 (2)
Patients with \geq 1 TEAE due to IRRs	42 (32)	39 (30)
Patients with \geq 1 TEAE due to PML	0	0
Patients with \geq 1 TESAE	14 (11)	14 (11)
Study drug-related	3 (2)	4 (3)

Kwak et al., Clin.Lymph, Myeloma and Leuk. 2021

DLBCL patients treatmed with CT-P10 as part of their standard clinical care in five European countries

Impact of rituximab biosimilars on OS in DLBCL

A Dutch population-based study

Mirian Brink et al Blood Adv 2021

Rapid Infusion Study of Rituximab Biosimilar

Conclusions:

- Rituximab biosimilars are good quality MoAb with a safety and efficacy profile identical to their originator
- Their similarity to Rituximab was determined by extensive pre-clinical analyses, and finally confirmed by clinical trials, with over 3000 participating patients
- Biosimilar for Biobetter: over 500 millions Euro saved every year in Europe, after introducing Rituximab biosimilars, allows to finance the innovation found

Prof. Woiciech Jurczak MD.

Prof. Wojciech Jurczak MD, PhD National Research Institute of Oncology Garncarska 11, 31-115 Krakow, Poland Wojciech.Jurczak@Lymphoma.edu.pl